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by
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1. Introduction

The standard definition, due to Cauchy, of convergence of an infinite series of real or complex

numbers states that XU, converges to the finite value S if the sequence of partial sums {Si},

n=0

n
where S,=31U,, converges to S. Many scries are not convergent in this sense, so it was natural
k=0
for other definitions of convergence to evolve after Cauchy’s time. Series such as 2(—~1)* and
k=0
N(~1)Y**1k are Cauchy divergent, but in Section 3 we note that if one accepts a definition of
k=0

convergence involving arithmetic means, we would assign the value % to the series 3} (—1)%
5 k=0

whereas if we accept a definition involving the limit of a function defined by a power series, we

could assign the value 711— to the series kE(——l)’““k,
=0

Historically all such definitions of convergence or “methods of summing series” are called
summability methods. The words convergent and divergent will always be used with reference to
the Cauchy definition. In Section 2, the regularity of summability methods will be dicussed, where
regularity means that the summability method in question sums every convergent series to the
value assigned it by the Cauchy definition. In Section 3, some of the standard methods of
summability will be discussed, namely, Cesaro’s method and Abel’s method. Their applications to
Fourier series and multiplication of series will be given in Section 4. Finally, Section 5 gives a
short discussion of “reverse regularity” (a Tauberian theorem) in which one asks when summability
of a series by method X to the value S implies convergence to the same value S.

The theorems, we shall introduce in this paper, are important in theory of summability. The

main purpose of this paper is to give new proofs to these theorems.

2. Regularity

It is obvious that there are some natural reguirements for a useful method of summability. It
should be simple in calculation, and it should be reasonably general, in the sense of being appli-
cable to a good variety of important series, and finally it should be consistant or regular. We
define this as follows:

Definition. A method of summability is said to be regular, if it sums every convergent series

to its sum in Cauchy’s sense.
Many methods of summability are special cases of the following procedure. For a given series
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S, let Sn:—.k"zv,c and define values Ty by
k=0 =0
‘TnZkgoankSk (n:O’ 1; 2}~ """" ) (1)

where the a,, are real or complex and such that each such series is convergent, so the T, are
well defined. There is an important theorem, due to Silverman, Toeplitz and Schur, which states
the necessary and sufficient conditions for regularity of such methods.

Theorem 1. The necessary and sufficient conditions that the sequence {T,} with 7', defined in
(1) should be convergent to S as n—oo whenever {S;} converges to S as k—oo are:

(a) kglankl <M (M>0) independent of n,
=0

(b) lm a,;=0 ’ for every fixed k,

{c) ,%o anp=Ap—1 as n—oo,

Proof: (i) Sufficiency '

Since {S,} converges, we know that the S, are bounded, so there exists K>0, such that
}Sz] <K for all n=0, 1, 2, - . Combining this with condition (a) we see that all of the infinite
series of (1) are absolutely convergent so 7% is well defined. '

Let S;—S= h;, and note that

ITn~S| = [Tn—AnS+AnS—S’ = '%(;an,ckk-kSCAn, -,

S0

75| <| Souhs

+|5]

An—~1].

Let arbitrary 2>0 be given. Now S,—S=/%,;—0 as k—oo, so there exists a number K;>0
such that |2,] <K, for all £=0,1,2, .- , and there exists an integer P>0 such that |k, <h/SM
for all 2>P, Let Ky>0 be such that |S|<K;, then we can use (a) and obtain

2 o »
TomS| < | Soncs |+ | Sanade | +] S]] Anm1| <K3 | awe | +MG/30D +K: | 4,1
Condition (b) implies that for each fixed k, there exists an integer N(£)>0 such that
la] <h/ (BK(P+1)] ~ for all a>NG),

so let Qk;_-orln"z}.}‘%N(k), then é‘,ﬂ lane <P 1A/ BK(P+1D)1=h/3K,; for all n>Q, Condition (c)

implies that there exists an integer R>0, such that
|A, —1|<h/3K, for.all n>R,
Let N=max (Q,R), then we see that for all n>N,
| Tn—S| <K {(B/3K )+ MCh/3M)+ Ko(1/3K3) =h,
so the conditions are sufficient.
(i) Necessity
Putting Sp=1 and 8;=0 for 2+#p, we have }C{I‘}o S;=0,

then lim 7% =lim iankSk*—'lim np=0 for all p.

n—00 n—00 k=0 n->00
Hence condition (b) must be satisfied.

Similarly putting S,=1 for every %, we have lim S; =1,

k—oo
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and hence
lim Tp=lim E S =lim Z an,c-—lxm Ap=1,
n—oo n—roo k=@ n—oo k=0 n—00
Therefore, condition (c) is a necessary condition.
. The last and also the hard part of the proof is to show that condition (a) is necessary.

Assume that one of the series of (a), say 3 lan,|; is divergent. Let azy be the first term in
k=0

this series such that a,y 0,

and let .
Sp= sgn(apk)/m‘é‘Nl apm| (k=N)
where sgn(Z2)=|Z|/Z if Z+0,
=0 if Z=0,
Now in the series
IT E (la / Ek] a )
? —I; 2% m=N oo ’
if we put z_o asm [= ) [amm [=d, and [an | =ti=di=dys,

then [ Ty

zé\, (ba/dw), where du,by are real, (bu/da)20, aﬁd dn is increasing to co, Let

La=3) (bu/dy).
k=N

Then for m>n=N,
L~ Lu=(bn11/dn+1) +Onsa/dnsz) -+ +(Oun/dn)
=((dn+1—dn)/Ans1)+[(@nia~dns1)/dnss) 4o +{(dn—dn-1)/dn]
2(doir—dntdara—dnsy oo +dn—du-1)/dn
=(dp—dun)/dn
=1—(dn/dn).
Keep n fixed and let m—oo, then the right side—1, so the Cauchy criterion for convergence is

violated. Hence the series
Ty |=3 (Bafdn)

is divergent. Note that 5,—0 as k—oo, and yet [T'p| is divergent, so this method could not be

regular.
We have thus shown that each
H,=3} | an
k=0
is finite, for n=0,1,2, ----- . Now assume that H,’s are unbounded.

Let £, be an arbitrary positive integer. Condition (b) says that for each k there is a positive
integer N (k) such that :

lane] <(1/k0) for all n>N(&),

so if we define N(k)=mazx {N(O), N(1), N(2),:, N(k;—1)}, then
f—
S | ane | <hiCa/bD =1 for all > N(ko.
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Now the numbers Hygor1, Hucorz, o+ are unbounded, so we can choose an integer my>N(ky)
such that simultaneously

k1~1

) amlk’<1 and  Hu>1342.

Next let ;3 be an integer such that &y >k, and write

kg —1

+ 2
k=ky

kg—1

o0
Hm1=2 amyk + 2 iamxk
k=0 k=ks

amik

Since Hap, is convergent, we can choose k;>#%;, such that

i amik <1
k=ks
then
ka—~1 ki—1 ko—1 o
1+1+ 2 ik >2 amite 4 2 ]amﬂc J+ 2 Iamik
k=K, k=0 k=k k=ky
>1%24-2,
S0
ko—1
2 }amlk >12.
=ky
Again, condition (b) says that there exists
N(k)=maz {N(0), N(1), N(2), -, Nlk;—1)}
such that
kp—1
kgo an | <1 for all n>N(ky),

and the numbers Hye1s Hywosz, - are unbounded. So, we can choose an integer mp>N(ks),

such that simultaneously
_kg—1

3 ]amk <1 and Hpy>224-2,
i=0
Again H,, is convergent, so we choose k3>ks;, such that
2V amer (<1
k==ka
and gét’
ka—1 kp—1 ka—1 =5
I+1+ X2 Amgke | > > Amak + Qmgk + lamgk
k=ka k=0 k=kg k=ks
>2842,
SO
k3—1
2 lamﬂcl >22.
k=ky
Continuing this process, we see that there exist positive integers &r, m, and kr+y such that
kr~1 Frt1—1 oo
2 Ayt <1, 2 Ak >rZ’ and 2 Amyg <10
k=0 k=tky k==kety
Now we define {Si} by

=(1/r)sgnlamn) k,<k<kpsy, for r=1, 2, 3, -,

then as k—oo, r—oo so Sp—0. Thus
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/am2k> A,k

amr—lk) Amyg

dmgk

Jam i+ 23(1/2)(

k=ty

/am3k>amrk+"‘+k% 1(1/(7” 1)) (
Jamz)amst ST (1 [ +D) (

T, = k% P k§1< ‘ amik

k=ky

5 w8
G0 (o

k=ky

Amr-1k

/amwﬂc) Am,g

Amyy 17
k=kr+t

_[.....’

SO

52 s

/:Lg

/ amzk) Amk

Am,k | — Amyp

kgl(

=t /amm) amk |—
= 1(1/(1' 1)) (I amr-lk' /amr-lk) am,
/amruk) am,k

-(1/2)%51

k=kz

~(x ﬁy+1ﬂkkm

Am,g ’7

‘Tm, —km l(l/r)

k=ky

5 (104D) ([ ames

k=kpey

2(1/r>k“21—1 Qs [~

-(1fe-0) 5,
>r? (l/r) S

hence |Tn,|>r—2.
Now let r—o00, m—o0, then m,—oo, and hence [T'n,|—0 while S,—0, so this method cannot

kz—1

>

F=k

am, & dm, ke |

Amrk Amep |7

[

-2

Am,p
! kzzkray

=ky

be regular. This completes the proof of the necessity of condition (a).

3. Special methods of summability

It this section we shall introduce two methods of summability which are rather simple and

useful. Regularity will follow from Theorem 1. Some examples will be given to show their

effectiveness.
For convenience, we use the notations of partial sums as follows:

Su=Uo+Us+Us+ - +U,,
Sp= So+S1+Sz+ """ +S,
Si=SE+Si+Si4- 48,

S2=8t 4 SP-SEt4eeeee +.57-1,
Definition (Cesaro summability)
A series K§ U is summable (C,p) (p=1, 2, 3, )
=0

to the sum Y iff
hm S/G=Y (G =(n+p)!/(n! p!I))

and we write kgon:Y C,p).
For example, (C,1) would be
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lim S3/@)=lm (So+Sy+ e+ +8n)/(n+1D).

Note that (C,0) is the ordinary Cauchy convergence.
Theorem 2. Summability (C,p) is regular for all positive integer p.
Proof: We will use mathematical induction and Theorem 1 to prove this result.

First we look at (C,1) and put
Th=SY/(r+D=1/(r+D) S,

This is a particular case of transformation (1) with am=1/(n-+1) for k<n, and @.x=0 for all
k>n,
Thus the matrix (as;) is

1 0 0 O o o e

1 1
z z 0 0 . . e

Yo s s 0 L .,

@

. . . . . . .

It is obvious that

hm At —hm 1/ (n+1)=0 for every fixed k.

‘n—oe

= %an,ﬂzl for all n,

Ank

Hence all conditions of Theorem 1 are satisfied; and so the theorem is true for (C, 1),

Suppose that it is true for (C,m), then
lim To=lim S3/(";")=S
whenever }ff& Sp=S.
Now look at (C,m+1), and
Tm;l=Sm;1/<nml>=k'>§08z”/<”mrl>:1/<n;’:r1> () Sp/Cn
=BT =3 b T,
where bup=C"%E)/("Y)  for k<n, bar=0 for F>n,

By induction hypotheses, 7%—S as k—oo0, hence from Theorem 1, it is sufficient to prove that

the matrix (baz) satisfies the conditions (a), (b) and (c).
Obviously,

lim s =lim B/t =0

for any fixed k and m. Hence (b) is satisfied. Since bax>0, if we can prove that the cond1t1on

(c) is satisfied, then (a) follows immediately. Now we show that
Bu=B b =F D=1 | | o

for all n, by induction.
Note that
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boo = (/i 0=1 and bu+buy=(CD+("D)/GiD=1,
so it is true for n=0 and »=1. Suppose it is true for n=p, ie,

’

K§0<"§Z’°)/(p;'f1“>=E1/<p?n"it1)]t(’”>+("°“)+ ~~~~~~ ")=1
or GO+ (MR =05
To complete this induction. there remains to prove that

P41

Eo(m;;k)/ (i =1.
But

Y A (D) (MR =PRD A+ (R =R
so the result follows. The last equality is known as Pascal’s triangle“‘rule, or by the formula of

Gamma functions_that
(p+m+2)/ (p+1) (m+2)+ (P+m+2)/ (p+2) (m+1)

= (pt+m+3)/ (p+2) (m+2),
Therefore (3) is true for all n and condition (c) is satisfied.

The induction gives the final conclusion that
lim T =lim S™/(%m) =8 for all integer m. "

This completes the proof of our theorem.
We could have noted that

g = (P ERD) /()
for (C,p) summability and conditions (a), (b) and (¢) of Theorem 1 are satisfied chrectly from this

form, but the proof given above also shows that if a series kZ_OUk is summable to Y (C,p), then
éoUzc is also summable to Y(C,p+1). The converse is not true, and this will become apparent by
studying some examples.

Exampl? Al. é; (—1)¢= £ (C,p) for all positive integer p.

We need only to show this for (C,1).

S+ =[1/(n+1)) ésk:(n+2>/(2n+z> if n is even,
if nis cv)‘(‘i'd,‘

o=

80

lim S3/(n+1)=1% (C, 1.

Example 2. kgo(——l)’”lk: 3 (C,2), but it is not summable (C,1).

Proof:
SO::O, Sr_—l, S2:-—1’ S3:2’ S4=—.2’......,

80
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SE/(n+1)=0 if n is even,
=% if n is odd.

Hence k_i‘,:(-l)"“k is not summable (C,1).
Now look at (C,2),
SYC5H=31 Sy § (FD(n+2)

=n+2)W/4(n+1)(n+2) if n is even,
=m+3)n+D/An+Dn-+2) . if nis odd,

80
lm S2/(uD=1  (C,2,
Next we want to just mention briefly the Holder summability (H,») which is closely related
to (C,p).
Let

Hn=U0+U1+U2+ """ +Un
Hl=(Hy+H+Hy+ - +Hy)/(n41)

.........................................................

HE=(HP -HP A HE 24 eoeeee +HE D/ (n+1),
For any positive integer p, the Holder summability (H,p) is defined as follow: if

lim Hr=Y

we say I%OU » is Holder summable of order p to Y, and write éﬂU;c:Y (H,p).

We note that (C,1)=(H,1) but will make no further use of Holder summalbiity in this paper.
Definition. (Abel summability)

Given a series }]OUk,suppose that 33 Opr" is convergent for 0=<x<1, If we let
i= =

F@=R U

8 M3

then the series kE U, is called Abel summable to the sum Y iff
=0
lim f(x)=lim %kak‘-:
x—1" x—1" k=0

and we write k;‘i:-) U,=Y (4),

Theorem 3. Abel summability is regular.
Proof: We could give the standard direct proof of this result, but we choose to use our

Theorem 1 instead. Assume that Sx—S, as £—oo, Let us note that
T(@)= SUat= Ne1-a)Se (0<z<1)
=0 2=y

This follows from
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Nzt =3 (Se—Se-Dab=(1—a) SISua* +Sox”
k=0 k=0 k=0

Let {64} be an arbitrary sequence such that 0<5,<1 and b,—1 as n—co,
Then anw=(b,)*1—5,) in (1),

The conditions of Theorem 1 are verified as follows:

3

>

Ank

:kgo Ank :kéo Gn)*(A=bn) =(1~bn)/(1~ba)=1
so (a) and (c) are satisfied. Now fix & ((=0, 1, 2,

----- ), then b,—1 an n—oo, so an—0 as
n—oo, hence the condition (b) is saisfied. ‘

Finally we know that lim f(x) exists iff lim f(b,) exists for every sequence {b,}—1, so Abel
£l n—s00
summability is regular.

We have pointed out that the “strength” of methods (C,p) increases with p. The following
theorem and examples will show that the summability (4) is stronger than any of them.

Theorem 4. If kﬁ’:Uk:Y (C,p) for some p, thenki)Uk:Y(A).
=0 =

Proof: If we repeat the process at the beginning of the proof of Theorem 3, we see that
D=2zt =(1-2)3] Suar =(1—2)* st
=0 k=0 =0
cee=1—2)? % S lgk=(1—x)r+! i Stat, where 0<x<1,
k=0 h=)
Our hypothesis says that

lim 'Sﬁ/(”}p) =Y

hence for every A>0, there exists an integer N>>0, such that #>N implies
|S2/ =Y <h
Let us write

©0

N

o0
3 Stak=3) Spat+ > Siat
k=0 k=0 k=N+1

Now we know that

S * - E+Py kbt T gy
»—kgl) Six +k=%+l[S£/< PpD Y Pp>xk+Y[/§o( g ozt kgo( P Dzt

SGMat=1/1-a)r

(0<z<1)
S0
(U=2)PHS] SEeh—Y =(1-2)3] Spat+ A-2)MT (SYG—-YI (Gt
~Y -2yt B,
hence

| @)=Y | =1 (1= Spat-Y |
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S(l—x)p“ ;ﬁo(l;’w)xk ‘

35t [+ SE 1Y G-
=0 10

g(1;xjp+1k§ s? +h+‘ Y l (l—fo’“kE:(’;”)
=0 =

for all x in 0<x<1 ,This shows that as"z—1", f(x)—Y so the theorem is proved.
Let us look at our previous examples 1 and 2 in terms of Abel summability.

Example 1: :2 (—1)*, We know that
=0
1/(1+x)=k§ (—1)kzh (0<z<1)
=0
so as x—1~ we see that.
S-Dr=1 @,
Example 2: %o(_Dka' we kn'ow that
goc-l)mlkxk:x/(ux)z (0<z<1)
so as x—1~ we see that
B (D=1 (A,

These examples merely illustrate Theorem 4. Now for an example showing a series which is
(A) summable but is not (C,p) summable for any p.
Example 3: If f(x)=e" and Up=F®(0)/k!

then

Doj=

Ms

> .

Note that the f(x) is well defined in |z} <1, Assume that

U]cz
0

!

* SU=Y (Cp) for some p.

Now o ] ’
Up=S2—St —Sit— o= St —Spos,
11_{510 SB/("P) =i’, and }11},?0 Sn/(*5P)=0 if m<p, so there exists a constant M >0 éuéh that
(Ug| M52 for all £=0, 1, 2, «cveereeee .

Hence

F@)=2Ust <MD | 2| F=M/A= 2o

for |z} <1, But we know that
A~lz]) P f(2)=1A—|z| )P+ P—00 as 21"

so this contradiction completes our proof.



+ kK = N ON SOME METHODS OF SUMMABILITY 93

There are other methods of summability which are closely related to Abel summability. We
shall mention, but not use, the general Abel summability method denoted by (A4, ).
Let {b,} be a sequence such that
ngogblgbzé ...... Sb/cﬁ ......

with ]lcxm by,=o00, and let

S (x)=k§Uke”’k” be convergent for all >0
=0

If lirgl JS(x) =Y, then we define

SW=Y (4,0)
:=0
As a special case, when b,=% and e “=y, we have

lim ZUke"”’—hm EUky"—Y

x—0% k= y=le k=0

which is just the summability (A).

4. Applications

In this section we give some of the standard applications of summability to Fourier series,
and multiplication of series.

(i) Fourier series.

In the theory of Fourier series, it is well-known that the Fourier series of a continuous function
need not converge to the value of the function at every point in the Cauchy sense. However this
situation can be remedied by using (C,1) summability. This famous result is due to Fejer.

Theorem 5. If f(x) is real valued, continuous, and periodic of period 2z for all real x,
then the Fourier series

§Cnei"”, with C,=1/(2x) f (e dx

is uniformly (C,1) summable to f(x) for all x.
Proof: et

Du(@)=3e®  and  Ku(@)=[/(r-D) 3Dale)

for n=0, 1, 2, - If we multiply D.(x) by ', then subtract D,(x) we obtain
(e —1) Dy(x) =i D7 gmine

s0
Du(z)= (" *P7—e717) [(et"—1).

Also
K@) =/ (1)) z":Dmcx>=tl/cn+1><e“—1>1<e“ ﬁ:em— ée—m

=[/(r+1{("—1)I["(1—e ") /(1 —e) — (1—e ¥ D7) /(1 —e™*)]
=[1/(n+1) (e —1D)(e=®—1)J(2— i+ DT_ gin+DT)
= (2— I MHDT_ gmiHDTY J1 (5 1 1)(2— el — )]
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=(2—2cos(n-+1Dx)/[((n+1)(2—2c0sx)]
=(1—cos(n4+Dx)/[((n+1)(1—cosx)]
Thus for 0<b< | x| L,
0<Kn(2)<2/((n+1)(1—cosb)], @
Note that

[Temaz=0 it &,
=2r if k=0,

sO

Wem [ Kaadde=(1/20) [ LA/ n+1) T DIz

=1/ +1NRA/20) [ Daleddz

=(n+1/(a+1)=1, )
Next, the nth partial sum S.(x) of the Fourier series of f(x) becomes

Su(@)=SCac =33 (/20) [ e ™dr1e™

m=-n

=(1/28) [ fpZeme-var
=@1/20) [ fODu(a—0dr.

If we substitute u=x—¢ and use the 2z periodicity of the integrand, we have
Su@= /20 [T fle—wDa@du=Q/28) | fla—wDa(ddu,
so we will write
Su(@)=(1/20) [ fla—DDa(rdt
Note that
- SK )=t DIBS@) =(1/ G+ DYRW/28) [ =D DD

—/2m) [ F =1/ 4 1D) D)

=Q/20) [ fle—DRa(Dd » ©
Now let arbitrary 2>0 be given, and by the continuity of f(x), we can choose M>0 such that
| flx)| <M for all . )
Also, since f(x) is uniformly continuous, there exists d;>0 such that |z—y|<d, implies
| f(a)—F (I <h/2. ®

Note that these statements are possible because f(x) is of period 27z, so we could just use the
boundedness and uniform continuity on [—,z] for all . Furthermore, by (4), we can choose N
and d=min (b, dy) such that 2>N and d<|¢] <z imply

Ku()<h/(4M) ; ©)
Thus from (4) through (9), we have
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Si@—F@=| (/20 [ fle—D K@t~ f )|
=20 [ pe-dRaa— f@/20 [ Karat |
<z [ fle——f() | Kuar
</22) 7°] fla=D—f@ | Kn(da
+/20) [ ] Fa=)=f(@) | RuBrdr
+/20 (1] fla—D—f2) | Katrdt
</@Me)) [ | fla—— 1> |
+ (/) [ K
+ G/ @M) [7| fo=D—fx) |de

</ @M= [ "2Mas + (b am) [ Ro(Ddt + (hf (8MeY) | 2Mdt
<W/D+(CR/D+(h/D=h
for all , and all n=N. Hence
lim Sa()=/(=)
uniformly, and by the definition of Cesaro smmability,

SICae=f(z)  (C1)

uniformly for all x; This completes the proof.
A very important consequence of this theorem is that any two continuous functions {(x) and
g(x) having the same Fourier series must be f(x)=g(x) for every x.

(ii) Multiplication of series

The Cauchy product of two series 31U,, 3IVr; is defined as the series
r=0 r=0

o0 7
SIWr  where W,=2U,V, .
r==0 K=¢

A natural question is to assume that

SWU,=E and 3)V,=F
r=0 r=0

o
in the ordinary Cauchy sense and inquire as to whether 3JW, converges; and if so does it
r==0
converge to EF. Abel, in his classical theorem, showed shat

SW,=EF
r=0

oo ©o
under the assumption that SIW, is convergent but the fact that 3IW, might not converge is well

r=0 =0

known. Theorem 6 will show how (C,p) summability can be brought to bear on such problems,
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Theorem 6. If §0U,=E(c,p) and SIV,=F(Cq), then iﬂW,:EF(C, pHa+D.
= r=0 r=
Proof: Let us consider the power series relation
QU EV,a) =5 W, for ] <1,
r= re== =20
This is valid because %UT and §VT are (A) summable if they are (C,;p) and (C,9) summable,
r==0 r=0

so the series are absolutely convergent.
Multiplying by appropriate power of (1—z) we have

(1=a) 7 (U2 A=)+ BV 2 =(1=2) P A RW,27)

and we recall that this was equivalent to
(DU ISSHVIa) =S (War,

thus we equate coefficients and have
ST W)= 1S 2WUISE- (V) | 10
Sincenl_i)?} SED/("3P)=E and %II_I)I‘}O SaVY/ ("D =F,

we may write
SED~GE  and SEV)~("DF,

where f~g means (f/g)—1 as n—co,

The equation (10) implies that
ST W ~EFRGTC .

We shall show that
NI = an
re=0

p+q+l

for all non-negative integer n by use of induction.

We know that it is true for n=0, n=1. Suppose it is true for n==m that
ST =CED
Look at
ST -2

I
HM;

QDI D Il G LGP ¢

=0

=IO+
=m.n(¢;p)<m+1q—jl-!—q-1>:<m+;:g+1 . (12)

*
1

0
The last step (12) can be verified by induction on q and by using (3). Then we have

e
%Cr;p)(m-r;—q +1) — ("”;i’;’ff‘) + (m+;))_;l-qq+1)
=

e MADFG D
—\ o€+t .
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therefore, (11) is true for all n. Consequently
lim SE*HW)/(pi)=FF
and
SW,=EF (Cp+g-+D.

Note that p=¢=0 means Cauchy convergence so we have

Corollary 1. If ﬁUr =F and §V,=F (ordinary convergence), then
r=0 r=0

SW, =EF (CD.

This was first proved by Cesaro in 1890. Next we get Abel’s result as
Corollary 2. If éﬂUr=E, goV,,:F, and ,%O W,

is convergent, then
3 W,=EF.

This follows from Corollary 1 since (C,1) summability is regular.

5. A Tauberian Theorem

There are many theorems which deal with the problem of finding conditions under which
the summabhility of a series to Y by a new method implies ordinary Cauchy convergence to the
same number Y. Alfred Tauber proved the first result of the type in 1897 so all such theorems
have come to be known as Tauberian theorem. We will prove just one such result, namely the

original theorem of Tauber.
Theorem 7. If §Un = Y(A) and nU,—0 asn—oo, then e‘EUn:Y in the Cauchy sense.
n=0 n=0
Proof: Without loss of generality we can assume that Uy=0. We write

N, —Y =50, — Wb+ fz)—Y
k=0 . k=0 k=0

X

=3Wi(1=a#) = SUsa+f(2) Y

k

i

Now
A=z =1—-2)A4z+x24-- FaP ) <k(1—-x)
for 0<2<1, so

;-2 | <0-2) 3|Vl

Since we are assuming that kU;—0 as k—oo, (and hence k|U,|—0), we know that the sequence
{k|U,|} is also (C,1) summable to 0 so

lim (1/%) U =0

Let arbitrary 2>0 be given, then there exists an integer N;>0
such that
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(1/2) SIU] <h/3 for all n>N,,
so if we set x=(n—1)/n we have

BUL— (=D /m)*) | < A/m) S| Vsl <h/3
for all #>N;, Next we estimate

SUyb= S, (e D/ Y
k=n+1 E=n41
Since k|U,]—0 as k—oo, there exists an integer Np;>0

such that k|N.| <h/3 for all £>N,, so we can write
SRUDB =D/ < ST/ =13/

< (W ) D((—1/m)*

< (W BB ((=D/m)*=h/3

for all n>Ns.
Also f((r —1)/n)—Y as n—oo so there exists integer N3>0
such that
[f(n-1)/n)—Y|<h/3 for all #>Nj,
so if we set N=max (Ni, Ny, N3, then

éﬂUk—Y'<lz/3+h/3+h/3=h
for all n>>N. Hence

SU,=Y in Cauchy sense.
£=0
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ON SOME METHODS OF SUMMABILITY

Wan-chen Hsieh

In the theory of summability there are two more useful and simple methods of summability,
namely, Cesaro’s method and Abel’s method. The close relation between them, the regularity of
these two methods, and their applicaions to Fourier series and multiplication of series are

discussed here.



